Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9160, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644387

RESUMO

Food-related illnesses have become a growing public concern due to their considerable socioeconomic and medical impacts. Vibrio parahaemolyticus and Staphylococcus aureus have been implicated as causative organisms of food-related infections and poisoning, and both can form biofilms which confer antibiotic resistance. Hence, the need for continuous search for compounds with antibiofilm and antivirulence properties. In this study, 22 iodinated hydrocarbons were screened for their antibiofilm activity, and of these, iodopropynyl butylcarbamate (IPBC) was found to effectively control biofilm formation of both pathogens with a MIC of 50 µg/mL which was bactericidal to V. parahaemolyticus and S. aureus. Microscopic studies confirmed IPBC inhibits biofilm formation of both bacteria and also disrupted their mixed biofilm formation. Furthermore, IPBC suppressed virulence activities such as motility and hemolytic activity of V. parahaemolyticus and the cell surface hydrophobicity of S. aureus. It exhibited a preservative potential against both pathogens in a shrimp model. IPBC disrupted the cell membrane of S. aureus and V. parahaemolyticus and differentially affected gene expressions related to biofilm formation and virulence. Additionally, it displayed broad-spectrum antibiofilm activities against other clinically relevant pathogens. These findings indicate IPBC offers a potential means of controlling infections mediated by Vibrio and Staphylococcus biofilms.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Vibrio parahaemolyticus , Biofilmes/efeitos dos fármacos , Vibrio parahaemolyticus/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Virulência/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38653896

RESUMO

The modern world requires a chemical industry that can run at low production costs while producing high-quality products with minimal environmental impact. The development of environmentally friendly, cost-effective, and efficient wastewater treatment materials remains a major problem for the sustainable approach. We prepared nanoscale cadmium sulfide (CdS)-enwrapped polypyrrole (PPy) polymer composites for degradation of organic pollutants. The prepared CdS@PPy nanocomposites were characterized by powder X-ray diffraction, scanning electron microscope (SEM), field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible (UV) absorption spectroscopy, indicating proper intercalation between CdS and PPy. Consequently, the catalytic efficiency of the synthesized hybrid nanocomposites was analyzed through the degradation of methylene blue (MB) and rhodamine B (Rh B) under visible light irradiation. The measured degradation efficiency of the dye solutions under the photolysis process is about 18% and 23% for MB and Rh B dye, respectively. Furthermore, the recycle test result concludes that the CdS@PPy composite exhibits 91% and 89% of MB and Rh B dye degradation efficiency even at the 4th cycle, respectively. The positive synergistic impact of CdS and PPy may be the result of effective photocatalytic degradation of MB and RhB.

3.
Front Cell Infect Microbiol ; 14: 1340910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606300

RESUMO

Vibrios are associated with live seafood because they are part of the indigenous marine microflora. In Asia, foodborne infections caused by Vibrio spp. are common. In recent years, V. parahaemolyticus has become the leading cause of all reported food poisoning outbreaks. Therefore, the halogenated acid and its 33 derivatives were investigated for their antibacterial efficacy against V. parahaemolyticus. The compounds 3,5-diiodo-2-methoxyphenylboronic acid (DIMPBA) and 2-fluoro-5-iodophenylboronic acid (FIPBA) exhibited antibacterial and antibiofilm activity. DIMPBA and FIPBA had minimum inhibitory concentrations of 100 µg/mL for the planktonic cell growth and prevented biofilm formation in a dose-dependent manner. Both iodo-boric acids could diminish the several virulence factors influencing the motility, agglutination of fimbria, hydrophobicity, and indole synthesis. Consequently, these two active halogenated acids hampered the proliferation of the planktonic and biofilm cells. Moreover, these compounds have the potential to effectively inhibit the presence of biofilm formation on the surface of both squid and shrimp models.


Assuntos
Ácidos Borônicos , Vibrio parahaemolyticus , Vibrio , Biofilmes , Fatores de Virulência/farmacologia , Antibacterianos/farmacologia
4.
Bioresour Technol ; 400: 130665, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582235

RESUMO

Biogas production through anaerobic digestion (AD) is one of the complex non-linear biological processes, wherein understanding its dynamics plays a crucial role towards process control and optimization. In this work, a machine learning based biogas predictive model was developed for high solid systems using algorithms, including SVM, ET, DT, GPR, and KNN and two different datasets (Dataset-1:10, Dataset-2:5 inputs). Support Vector Machine had the highest accuracy (R2) of all the algorithms at 91 % (Dataset-1) and 87 % (Dataset-2), respectively. The statistical analysis showed that there was no significant difference (p = 0.377) across the datasets, wherein with less inputs, accurate results could be predicted. In case of biogas yield, the critical factors which affect the model predictions include loading rate and retention time. The developed high solid machine learning model shows the possibility of integrating Artificial Intelligence to optimize and control AD process, thus contributing to a generic model for enhancing the overall performance of the biogas plant.

5.
Chemosphere ; 355: 141790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554870

RESUMO

Cadmium sulfide-tin sulfide (CdS-SnS) nanoparticles are a novel kind of photocatalyst. These CdS-SnS nanoparticles are synthesized and characterized using UV-Vis, FT-IR, XRD, SEM-EDX, and DLS techniques, to understand their size distribution, crystalline nature, morphology, shape, optical properties, and elemental composition. This research offers insight into the efficient photocatalytic degradation of Phenanthrene (PHE) using CdS-SnS. The CdS-SnS NPs as photocatalyst can effectively photodegrade the polycyclic aromatic hydrocarbons (PAH) such as phenanthrene under simulated solar and UV light. UV-vis spectra of these nanoparticles exhibit peaks at 365 and 546 cm-1 respectively, the mean size of the CdS-SnS NPs in DLS is determined to be 78 nm. The CdS-SnS stretching frequency was observed at wave numbers below 700 cm-1, the absorption peak at 1123 cm-1 indicates the presence of C-N stretch or CS bond of thiourea, while the peak at 1350.38 cm-1 corresponds to the tris-amine C-N stretch in FT-IR. Additionally, the peaks observed at 2026 cm-1 indicate the presence of isothiocyanate (NCS). 1456.23 cm-1 represents the asymmetric scissor deformation vibration. EDAX revealed the presence of elemental Cd and Sn oxides. The antimicrobial studies showed that the CdS-SnS NPs at the concentration of 150 µg/mL, exhibit maximum inhibition (15 ± 1.25 mm) against the strains Proteus mirabilis followed by Staphylococcus epidermidis and Clostridium spp. Among fungal strains Colletotrichum spp. exhibits the maximum zone of inhibition (9 ± 0.25). This research also observed the cytotoxic effects of CdS-SnS NPs on HepG2 and ZF4 cells. HepG2 cells exhibited 50% inhibition at 50 µg/mL and 70% inhibition at 100 µg/mL concentrations, while ZF4 cells exhibited 50% inhibition at 50 µg/mL and 78% inhibition at 100 µg/mL concentrations, respectively. The parameters like concentration of PHE, concentration of CdS-SnS NPs, pH, and sources of irradiation on batch adsorption were examined to maximize the efficiency of the photodegradation process.


Assuntos
Compostos de Cádmio , Nanopartículas , Fenantrenos , Sulfetos , Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Fenantrenos/toxicidade
6.
Environ Geochem Health ; 46(3): 96, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376605

RESUMO

SrTiO3/Ag nanocomposites were synthesized using a facile wet impregnation method, employing rigorous experimental techniques for comprehensive characterization. XRD, FTIR, UV, PL, FESEM, and HRTEM were meticulously utilized to elucidate their structural, functional, morphological, and optical properties. The electrochemical performance of the SrTiO3/Ag nanocomposite was rigorously assessed, revealing an impressive specific capacitance of 850 F/g at a current density of 1 A. Furthermore, the photocatalytic activity of the SrTiO3/Ag nanocomposite was rigorously examined using methylene blue (MB) dye, and the results were outstanding. After 120 min of UV irradiation, the nanocomposite exhibited an exceptional MB dye degradation efficiency exceeding 88%. The SrTiO3/Ag nanocomposite represents an exemplary catalyst in terms of efficiency, cost-effectiveness, environmental compatibility, and reusability. The electron and superoxide radicals play a chief role in the MB dye degradation process. The inclusion of Ag within the SrTiO3 matrix facilitated the formation of a conductive nano-network, ultimately resulting in superior capacitive and photocatalytic performance.


Assuntos
Poluentes Ambientais , Nanopartículas , Prata , Condutividade Elétrica , Azul de Metileno
7.
Chemosphere ; 352: 141352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307332

RESUMO

Benzopyrene (BaP) stands as a potent polycyclic aromatic hydrocarbon (PAH) molecule, boasting five fused aromatic rings, making its way into the human food chain through soil contamination. The persistent environmental presence of PAHs in soil, attributed to industrial exposure, is primarily due to their low molecular weight and hydrophobic nature. To preemptively address the entry of BaP into the food chain, the application of nanocomposites was identified as an effective remediation strategy. Post-synthesis, comprehensive characterization tests employing techniques such as UV-DRS, XRD, SEM-EDX, FTIR, and DLS unveiled the distinctive features of the g-C3N4-SnS nanocomposites. These nanocomposites exhibited spherical shapes embedded on layers of nanosheets, boasting particle diameters measuring 88.9 nm. Subsequent tests were conducted to assess the efficacy of eliminating benzopyrene from a combination of PAH molecules and g-C3N4-SnS nanocomposites. Varied parameters, including PAH concentration, adsorbent dosage, and suspension pH, were systematically explored. The optimized conditions for the efficient removal of BaP utilizing the g-C3N4-SnS nanocomposite involved 2 µg/mL of benzopyrene, 10 µg/mL of the nanocomposite, and a pH of 5, considering UV light as the irradiation source. The investigation into the mechanism governing BaP elimination closely aligned with batch adsorption results involved a thorough exploration of adsorption kinetics and isotherms. Photocatalytic degradation of benzopyrene was achieved, reaching a maximum of 86 % in 4 h and 36 % in 2 h, with g-C3N4-SnS nanocomposite acting as the catalyst. Further validation through HPLC data confirmed the successful removal of BaP from the soil matrix.


Assuntos
Grafite , Nanocompostos , Compostos de Nitrogênio , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Nanocompostos/química , Grafite/química , Benzo(a)pireno , Benzopirenos , Solo , Catálise
8.
Environ Res ; 251(Pt 2): 118350, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38341072

RESUMO

The present work describes the fabrication of the quaternary Zn-Cd-Sn-S nanostructure and its use in photocatalytic remediation of the biological contaminant pyrene from water resources. Nanostructures fabricated were characterized by XRD, UV-DRS, FTIR, DLS, EDX, and SEM. In addition, an agar well diffusion test was conducted to determine the antimicrobial activity. Zn-Cd-Sn-S (ZCSS) nanostructures were evaluated for their photocatalytic degrading potential by using pyrene as a model pollutant and evaluating the effects of parameters like initial pyrene concentration, nanocatalyst dosage, solution pH, and light sources during batch adsorption. Nanostructures had a size of 16.74 nm according to the XRD analysis. With a 300 min time interval, ZCSS nanostructures achieved the highest removal rate of 86.3%. Pyrene degradation metabolites were identified using GC-MS analysis of the degraded samples. A Freundlich isothermal (R2 0.9) and pseudo-first-order (R2 0.952) reaction kinetic path best fit the adsorption results for pyrene by the fabricated ZCSS nanostructure, based on the adsorption and kinetic studies. Zn-Cd-Sn-S exhibited the highest antibacterial activity against Staphylococcusaureus (22.4 mM). Due to the combined synergistic actions of the constituent metals, this quaternary nanostructure exhibited exceptional photocatalytic activity. To our est knowledge, the ZCSS nanostructure was made and used to remove pyrene by photocatalysis and fight microbes. Ultimately, the ZCSS nanostructure was found to be an effective photocatalyst for eradicating pathogenic microbes from water.

9.
Environ Res ; 252(Pt 1): 118454, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38387488

RESUMO

The oncogenic and genetic properties of anthracene, a member of the polycyclic aromatic hydrocarbons (PAHs) family, pose a significant health threat to humans. This study aims to investigate the photocatalytic decomposition of anthracene under various conditions, such as different concentrations of PAHs, varying amounts of NiO (nickel oxide) nanoparticles, and different pH levels under ultraviolet light and sunlight. The synthesized NiO nanoparticles showed surface plasma resonance at 230 and 360 nm, while XRD and SEM analysis confirmed the nanoparticles were cubic crystalline in structure with sizes ranging between 37 and 126 nm. NiO nanoparticles exhibited 79% degradation of pyrene at 2 µg/mL of anthracene within 60 min of treatment. NiO at 10 µg/mL concentration showed significant adsorption of 57%, while the adsorption method worked efficiently (72%) at 5 pH. Photocatalytic degradation was confirmed by isotherm and kinetic studies through monolayer adsorption and pseudo-first-order kinetics. Further, the absorption process was confirmed by performing GC-MS analysis of the NiO nanoparticles. On the other hand, NiO nanoparticles showed antimicrobial activity against Gram negative and Gram-positive bacteria. Therefore, the present work is one of its kind proving the dual application of NiO nanoparticles, which makes them suitable candidates for bioremediation by treating PAHs and killing pathogenic bacteria.

10.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397101

RESUMO

Skin microbiota, such as acne-related Cutibacterium acnes, Staphylococcus aureus, and fungal Candida albicans, can form polymicrobial biofilms with greater antimicrobial tolerance to traditional antimicrobial agents and host immune systems. In this study, the phytopigment shikonin was investigated against single-species and multispecies biofilms under aerobic and anaerobic conditions. Minimum inhibitory concentrations of shikonin were 10 µg/mL against C. acnes, S. aureus, and C. albicans, and at 1-5 µg/mL, shikonin efficiently inhibited single biofilm formation and multispecies biofilm development by these three microbes. Shikonin increased porphyrin production in C. acnes, inhibited cell aggregation and hyphal formation by C. albicans, decreased lipase production, and increased hydrophilicity in S. aureus. In addition, shikonin at 5 or 10 µg/mL repressed the transcription of various biofilm-related genes and virulence-related genes in C. acnes and downregulated the gene expression levels of the quorum-sensing agrA and RNAIII, α-hemolysin hla, and nuclease nuc1 in S. aureus, supporting biofilm inhibition. In addition, shikonin prevented multispecies biofilm development on porcine skin, and the antimicrobial efficacy of shikonin was recapitulated in a mouse infection model, in which it promoted skin regeneration. The study shows that shikonin inhibits multispecies biofilm development by acne-related skin microbes and might be useful for controlling bacterial infections.


Assuntos
Acne Vulgar , Anti-Infecciosos , Naftoquinonas , Infecções Estafilocócicas , Animais , Camundongos , Candida albicans/genética , Staphylococcus aureus , Biofilmes , Anti-Infecciosos/farmacologia
11.
Int J Biol Macromol ; 261(Pt 1): 129592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272412

RESUMO

Regarding food security and waste reduction, preserving fruits and vegetables is a vital problem. This comprehensive study examines the innovative potential of coatings and packaging made of nanocellulose to extend the shelf life of perishable foods. The distinctive merits of nanocellulose, which is prepared from renewable sources, include exceptional gas barrier performance, moisture retention, and antibacterial activity. As a result of these merits, it is a good option for reducing food spoilage factors such as oxidation, desiccation, and microbiological contamination. Nanocellulose not only enhances food preservation but also complies with industry-wide environmental objectives. This review explores the many facets of nanocellulose technology, from its essential characteristics to its use in the preservation of fruits and vegetables. Furthermore, it deals with vital issues including scalability, cost-effectiveness, and regulatory constraints. While the use of nanocellulose in food preservation offers fascinating potential, it also wants to be cautiously careful to assure affordability, effectiveness, and safety. To fully use the potential of nanocellulose and advance the sustainability plan in the food business, collaboration between scientists, regulatory bodies, and industry stakeholders is important as we stand on the cusp of a revolutionary era in food preservation.


Assuntos
Embalagem de Alimentos , Verduras , Verduras/microbiologia , Frutas/microbiologia , Conservação de Alimentos
12.
Environ Geochem Health ; 46(2): 30, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227286

RESUMO

The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.


Assuntos
Poluentes Ambientais , Águas Residuárias , Escherichia coli , Frutas , Staphylococcus aureus , Nanopartículas Magnéticas de Óxido de Ferro , Extratos Vegetais
13.
Artigo em Inglês | MEDLINE | ID: mdl-38244161

RESUMO

Fluoride ions must be removed from drinking water in order to prevent fluorosis. Many conventional techniques have been examined for the defluoridation of water all over the world. As far as fluoride ions are concerned, adsorption is the most promising method for the removal of them from aqueous environments. In the present study, we aim to find out how well Euphorbia neriifolia plants can remove fluoride from water using activated and carbonized adsorbents. The Euphorbia neriifolia plant stem was pulverized, dried, and activated using calcium ions extracted from used eggshells collected nearby. The synthesized adsorbent material before and after adsorption of fluoride ions was systematically characterized using FTIR, XRD, SEM with EDAX, TGA, and zero-point charge. The defluoridation capacity of the as-prepared adsorbent material was investigated using batch adsorption studies. Various influencing factors such as contact time, solution pH, initial fluoride concentration, mass of the adsorbent, temperature, and co-existing ions were systematically investigated towards the removal of fluoride ion on prepared adsorbent material. This study was conducted to identify the optimal conditions of prepared adsorbent for the maximum removal of fluoride ions from aqueous solution. A groundwater sample with fluoride content of more than 1.5 ppm was taken and studied in this present work. A basic quality indicator of the synthesized material was examined, and its ability to remove fluoride was determined. The findings provide insight into the selective elimination of fluoride ions from aqueous environment.

14.
Phytomedicine ; 124: 155306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176270

RESUMO

BACKGROUND: Most bacteria and fungi form biofilms that attach to living or abiotic surfaces. These biofilms diminish the efficacy of antimicrobial agents and contribute to chronic infections. Furthermore, multispecies biofilms composed of bacteria and fungi are often found at chronic infection sites. PURPOSE: In this study, lawsone (2­hydroxy-1,4-naphthoquinone) and its parent 1,4-naphthoquinone were studied for antimicrobial and antibiofilm activities against single-species and multispecies biofilms of enterohemorrhagic Escherichia coli O157:H7 (EHEC) and Candida albicans. METHODS: Biofilm formation assays, biofilm eradication assays, antimicrobial assays, live cell imaging microscopy, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), extracellular polymeric substances and indole production, cell surface hydrophilicity assay, cell motility, cell aggregation, hyphal growth, dual species biofilm formation, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and toxicity assays on plant seed germination and nematode model were utilized to investigate how lawsone affect biofilm development. RESULTS: Sub-inhibitory concentrations of lawsone (35 µg/ml) significantly inhibited single-and multispecies biofilm development. Lawsone reduced the production of curli and indole, and the swarming motility of EHEC, efficiently inhibited C. albicans cell aggregation and hyphal formation, and increased the cell surface hydrophilicity of C. albicans. Transcriptomic analysis showed that lawsone suppressed the expression of the curli-related genes csgA and csgB in EHEC, and the expression of several hypha- and biofilm-related genes (ALS3, ECE1, HWP1, and UME6) in C. albicans. In addition, lawsone up to 100 µg/ml was nontoxic to the nematode Caenorhabditis elegans and to the seed growth of Brassica rapa and Triticum aestivum. CONCLUSION: These results show that lawsone inhibits dual biofilm development and suggest that it might be useful for controlling bacterial or fungal infections and multispecies biofilms.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Naftoquinonas , Candida albicans , Biofilmes , Indóis/farmacologia
15.
Chemosphere ; 350: 141122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184078

RESUMO

A few PAHs (polycyclic aromatic hydrocarbons) which are known to be pervasive and are of high priority are found to be detrimental pollutants having high potential in the destruction of the network. Hence, photocatalytic disintegration of these PAHs, namely benzo [a]pyrene, found in water is explored. A novel nanocomposite of Ag-Ni on g-C3N4 was fabricated. The prepared nanocomposites were characterized by techniques like UV, XRD, SEM-EDAX, FTIR, and DLS to understand their nature. The activity of the same as a catalyst in the deterioration of the benzopyrene molecule in water was investigated under different conditions including change in the concentration of the PAH, dosage of the catalyst prepared, pH of the reaction mixture, and by changing the source of irradiation. In addition, antibacterial analysis of the prepared nanocomposite material was conducted to determine whether it could be applied to environmental cleanup strategies of high quality.


Assuntos
Grafite , Nanocompostos , Compostos de Nitrogênio , Hidrocarbonetos Policíclicos Aromáticos , Prata/química , Benzo(a)pireno , Níquel , Luz , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Água , Catálise
16.
Environ Res ; 243: 117802, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043891

RESUMO

This investigation was designed and performed to compare the phytochemical profiling, activities of antibacterial, thrombolytic, anti-inflammatory, and cytotoxicity of methanol extract (ME-E) and aqueous extract (AQ-E) of aerial parts of Achyranthes aspera through in-vitro approach. Also characterize the functional groups of bioactive compounds in the ME-E through Fourier-transform infrared (FTIR) spectroscopy analysis. Interestingly, qualitative phytochemical screening proved that the ME-E contain more number of vital phytochemicals such as phenolics. saponins, tannins, alkaloids, flavonoids, cardiac glycosides, steroids, and phlobatannins than AQ-E. Similarly, the ME-E showed notable antibacterial activity as dose dependent manner against Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa at 1000 µg mL-1 concentration. ME-E also showed 75.2 ± 2% of clot lysis (thrombolytic activity) at 1000 µg mL-1 dosage and it followed by AQ-E 51.24 ± 3%. The ME-E showed moderate and AQ-E demonstrate poor anti-inflammatory activity evidenced by albumin denaturation inhibition and anti-lipoxygenase assays. Furthermore, the ME-E demonstrated a dose dependent cytotoxicity was noted against brine shrimp larvae. In support of this ME-E considerable activities, the Fourier transform infrared (FTIR) analysis confirmed that this extract contain more number peaks attributed to the stretch of various essential functional groups belongs to different bioactive compounds. Hence this ME-E of A. aspera can be considered for further in depth scientific investigations to validate their maximum biomedical potential.


Assuntos
Achyranthes , Extratos Vegetais , Extratos Vegetais/toxicidade , Antibacterianos/toxicidade , Antibacterianos/análise , Metanol/análise , Compostos Fitoquímicos/toxicidade , Compostos Fitoquímicos/análise , Componentes Aéreos da Planta/química
17.
Chemosphere ; 349: 140860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052312

RESUMO

Phenanthrene is a persistent organic pollutant released by numerous industries. The purpose of the study is to construct a batch reactor for phenanthrene degradation using a bimetallic (BM) ZnS-SnS nanoparticle as a photocatalyst. ZnS-SnS BM NPs were used as a photocatalyst, employed from precursors Zinc acetate dihydrate and tin (II) chloride dihydrate, with crystalline cubic-shaped particle sizes. ZnS-SnS BM NPs were utilized in batch adsorption assays to assess the impact of phenanthrene degradation parameters on various PAHs (Polycyclic aromatic hydrocarbons) concentrations, pH levels, and irradiation sources. Adsorption kinetic and isotherm tests revealed that the pseudo-first order kinetic model, pseudo-second order kinetic model, and Langmuir isotherm model all fit effectively with the effective phenanthrene degradation using ZnS-SnS BM NPs. The degraded product were analyzed for GC-MS, revealing that organic pollutant phenanthrene was converted into harmless by-products like n-hexadecenoic acid, oleic acid, and octadecanoic acid. The toxicity of phenanthrene was observed to decrease with an increase in ZnS-SnS BM NPs concentration. ZnS-SnS BM NP concentration of 150 µg/mL, the zone of inhibition values was recorded highest zone of inhibition (19 ± 1.2 mm) against the strains S. epidermis followed by B. cereus and Clostridium spp. Further adult zebrafish were found to be less toxic to ZnS-SnS BM NPs after 96 h of exposure, with an LD50 of 100 µg/L. The toxicity escalated as concentrations increased. Behavior test showed normal swimming, learning, and memory in open tank and T-maze tests, while 100 µg/L showed pausing/frozen time in zebra fish therefore low doses are considered safe. Hence by employing ZnS-SnS BM NPs can be engaged in waste water treatment for PAH degradation.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Peixe-Zebra , Adsorção , Fenantrenos/toxicidade , Fenantrenos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
18.
Environ Res ; 242: 117793, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040176

RESUMO

This research was performed to assess the influence of Cd and Cr metals on growth, pigments, antioxidant, and genomic stability of Oryza sativa indica and Oryza sativa japonica were investigated under hydroponic conditions. The results revealed that significant metal influence on test crop growth, pigment content, metal stress balancing antioxidant activity in a dose dependent manner. Since, while at elevated (500 ppm) concentration of Cd as well as Cr metals the pigment (total chlorophyll, chlorophyll a, b and carotenoids) level was reduced than control; however antioxidant activity (total antioxidant, H2O2, and NO) was considerably improved as protective mechanisms to combat the metal toxicity and support the plant growth. Furthermore, the test crops under typical hydroponic medium (loaded with Cd and Cr as 200, 300, 400, and 500 ppm) growth conditions, effectively absorb the metals from medium and accumulated in the root and least quantity was translocated to the shoot of this test crops. Furthermore, typical RAPD analysis with 10 universal primers demonstrated that the genomic DNA of the test crops was adaptable to develop metal resistance and ensure crop growth under increased concentrations (500 ppm) of tested heavy metals. These findings suggest that these edible crops have the ability to accumulate Cd along with Cr metals, and additionally that their genetic systems have the ability to adapt to metal-stressed environments.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cromo/toxicidade , Cromo/análise , Antioxidantes/farmacologia , Oryza/genética , Cádmio/toxicidade , Cádmio/análise , Clorofila A/análise , Clorofila A/farmacologia , Hidroponia , Peróxido de Hidrogênio , Técnica de Amplificação ao Acaso de DNA Polimórfico , Metais Pesados/toxicidade , Metais Pesados/análise , Produtos Agrícolas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
19.
Colloids Surf B Biointerfaces ; 234: 113698, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070368

RESUMO

Microbial biofilms are protected surface-attached communities of bacteria or fungi with high drug tolerance that typically cause persistent infections. Smart drug carriers are being explored as a promising platform of antimicrobials to address their recalcitrance to antibiotic agents and minimize the side effects of current therapies. In this study, soy lecithin liposomes loaded with lauric acid (LA) and myristoleic acid (MA) were formulated using an emulsification method, and their antibiofilm properties were evaluated. The physio-chemical properties of the most potent liposome were characterized using a zeta sizer, transmission electron microscopy (TEM), fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. TEM and zeta sizer analysis of the liposome revealed a homogeneous spherical structure with an average size of 159.2 nm and zeta potential of - 5.4 mV. The unilamellar liposomes loaded with LA at 0.1-0.5 µg/mL achieved obvious antibiofilm efficiency against Staphylococcus aureus and Candida albicans and their dual biofilms. Also, LA-loaded liposome formulation efficiently disrupted preformed biofilms of S. aureus and C. albicans. Furthermore, formulated liposomal LA (0.1 µg/mL) exhibited 100-fold increased dual biofilm inhibition compared to LA alone. The single biofilms and dual biofilm formation on polystyrene were reduced as determined by 3D-bright field and scanning electron microscopy. Zeta potential measurements exhibited neutralized surface charge of S. aureus, and the liposomes inhibited hyphae formation in C. albicans. These findings demonstrated that the LA-incorporated liposomes have great potential to become a new, effective, and good antibiofilm agent for treating S. aureus and C. albicans infections.


Assuntos
Anti-Infecciosos , Lipossomos , Lipossomos/farmacologia , Staphylococcus aureus , Ácidos Graxos/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Candida albicans , Biofilmes , Testes de Sensibilidade Microbiana
20.
Int J Biol Macromol ; 258(Pt 2): 128970, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154723

RESUMO

The utilization of banana fiber derived from micro-cellulose (MC) was exploited as a supporting material for advanced oxidation process (AOP) on the degradation of methylene blue and methyl violet dyes in the presence of H2O2-UV in aqueous medium for the first time using green chemistry protocols. Additionally, it was also effectively utilized for the adsorption of methylene blue dye using addition of H2O2 in the presence of sunlight. The MC powder was fabricated using an acid alkali process from the pseudo-stem of a banana tree. The as-fabricated MC powder was systematically characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometer (EDX), and zero point charge (pHzpc). The AOP assisted degradation of dye molecules was monitored by using calorimetric techniques as a function of dye concentration and pH in a batch reactor. In a short period of time, the maximum degradation efficiency of 98 % of methylene blue was achieved using MC powder assisted H2O2 under UV irradiation at a minimum irradiation time of 120 min at pH 7.0 using dosage of 0.2 g/L. However, in the absence of UV light, the degradation efficiency of MC powder assisted H2O2 was only about 5-10 % without UV light irradiation. The dye removal was studied as a function of various operational parameters such as pH (3-11), catalyst dose (0.2-0.6 g/L), and initial dye concentration (100-400 mg/L). In the presence of H2O2-sunlight and 0.2 g/L of dosage at pH 7.0 at a minimum contact time of 120 min, MC fiber showed maximum adsorption capacities of 98% and 85% for 100 mg/L and 400 mg/L of methylene blue concentrations. According to the obtained data, the adsorption of methylene blue dye on MC follows the Freundlich isotherm model (R2 = 0.9886) and pseudo-first-order kinetic model (R2 = 0.9596) due to the higher regression coefficients. This process of dye degradation and adsorption process is a novel one and environmentally benign for an effective removal of hazardous dyes.


Assuntos
Musa , Poluentes Químicos da Água , Celulose , Vapor , Adsorção , Corantes/química , Azul de Metileno/química , Peróxido de Hidrogênio , Pós , Catálise , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...